ESU Testing (60601-2-2)
Electrosurgical History & Theory

ESU Testing and Calibration Training
Focus - HF Leakage Testing

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Electrosurgical History and Theory</td>
</tr>
<tr>
<td>2</td>
<td>ESU Standards – IEC 60601-2-2</td>
</tr>
<tr>
<td>3</td>
<td>HF Leakage Testing</td>
</tr>
<tr>
<td>4</td>
<td>Q&A</td>
</tr>
</tbody>
</table>
Development of the first commercial electrosurgical device is credited to William T. Bovie, who developed the first electrosurgical device while employed at Harvard University. The first use of an electrosurgical generator in an operating room occurred on October 1, 1926 at Peter Bent Brigham Hospital in Boston, Massachusetts. The operation—removal of a mass from a patient’s head—was performed by Harvey Cushing. The low powered hyfrecator for office use was introduced in 1940.
Electrosurgery is the application of a high-frequency electric current to biological tissue as a means to cut, coagulate, desiccate, or fulgurate tissue.

Electrosurgical devices are frequently used during surgical procedures because they help to prevent blood loss by sealing the tissue and blood vessels during the cutting of the tissue.

Electrosurgery can be used to achieve either the mass destruction of large volumes of tissue as in endometrial ablation, fine incision as required by the reconstructive microsurgeon, or tasks requiring both cutting and coagulation, such as incision of the skin and subcutaneous tissue with hemostasis.
Although **ESU** devices may be used for the *cauterization* of tissue in some applications, electrosurgery is usually used to refer to a quite different method than electrocautery.

Cautery uses heat conduction from a probe heated to a glowing temperature by a direct current (much in the manner of a soldering iron).

Electrosurgery, by contrast, uses alternating current to directly heat the tissue itself. This heat causes the destruction of small blood vessels and halting of bleeding correctly called *coagulation*.

Often electrosurgery is mistakenly referred to as diathermy.

Diathermy means dielectric heating, a high-frequency electric current delivered via shortwave, microwave, or ultrasound to generate deep heat in body tissues. This effect is most widely used in microwave ovens which operate at gigahertz frequencies.
To understand electrosurgery, it must be clear that the effects obtained are the result of heat. This heat is derived from the rapid changes in the direction (polarity) that a.c. current flow provides. There is no net transfer of electrons, and likewise, no movement of ions across cell membranes (depolarization). Part of the heat generated is from the tissue's impedance (resistance to current flow), but the majority of heat stems from the rapid vibration of molecules within the tissue under the effect of the changing electromagnetic field.

EMF. E is voltage and H is magnetic force in physics.

We will discuss testing for dangerous levels of **H or HF leakage** today.

Please ask questions now if you have forgotten your right hand rule from basic electronics or physics class.
The main difference between these two modalities is that in monopolar surgery, the current goes through the patient to a return electrode (patient pad or neutral electrode) to complete the current cycle, while in bipolar surgery, the current only passes through the tissue grasped between the two electrodes of the instrument.
In Cut mode, tissue is vaporized as the HF current passes through the tissue and the heat of vaporization seals the tissue surrounding the cut tissue.

In Cut mode, if the electrode touches the tissue it is desiccated.

If the electrode is held over the tissue and an air gap is present allowing the current to jump the gap and fulgerate the tissue.

Sometimes the energy that jumps the gap is called RF Plasma energy.
• Desiccation

is the state of extreme dryness, or the process of extreme drying. A desiccant is a hygroscopic (attracts and holds water) substance that induces or sustains such a state in its local vicinity in a moderately sealed container.

Desiccation in ElectroSurgery is produced by low current and relatively higher voltage applied over a broad area, producing a low current density. In desiccation, the cells are shrunken and shriveled with elongated nuclei. Cellular detail is preserved. This effect is produced by the loss of water from the cells, without extensive coagulation of proteins.
Fulguration is a procedure to destroy and remove tissue (such as a malignant tumor) using a high-frequency electric current applied with a needlelike electrode.

Fulguration results from the action of electrical arcs striking the tissue at widely divergent locations, producing a localized instantaneous high current density, but a low average current density. The characteristics of fulguration are localized tissue destruction and large amounts of carbonization. Localized destruction occurs because, after the arc strikes, current is dispersed widely, causing rapid diminution of current density and little generation of heat in the deeper structures. Carbonization is due to the high temperature of the tissue at the point of the arc strike. The thin layer of carbon and the desiccated tissue beneath it form an insulating barrier, decreasing the probability of subsequent arc strikes in the same location. Fulguration requires low amperage and high voltages to overcome the resistance of the large distances between electrode and tissue.
Coagulation mode is used to perform hemostasis and vessel sealing.
Coagulation is the process by which blood forms clots. It is an important part of hemostasis, the cessation of blood loss from a damaged vessel, wherein a damaged blood vessel wall is covered by a platelet and fibrin-containing clot to stop bleeding and begin repair of the damaged vessel.

Coagulation occurs at higher current densities than desiccation, resulting in higher tissue temperatures. The tissue fluids boil away and the proteins become denatured, forming a white coagulum similar to that produced when an egg white is boiled. There is loss of cellular definition as all tissue structures fuse into a formless, homogenous mass with a glassy or transparent appearance. This is the classic appearance of coagulation necrosis.
ESU modes and Surgical objectives

Can be confused

Surgeons have categorized ESU modes by:
 The changes to the structure of the cells
 Desiccation
 Coagulation
 The type of cut different waveforms produce
 Fulgeration
 Vaporization

Electrical engineers have categorized ESU modes by:
 The shape of the waveform
 Cut
 Coag

Both Cut and Coag have desiccation and fulgeration options
Electrosurgery

Pure sinusoidal waveform
Electrosurgery
Amplitude modulated sine wave
Coagulation
Fulgeration waveform
Electrosurgery
Blend waveform
Coagulation
Coag Spray waveform
Electrosurgical History & Theory
ESU Testing and Calibration Training
Focus - HF Leakage Testing

1. Electrosurgical History and Theory
2. ESU Standards – IEC 60601-2-2
3. HF Leakage Testing
4. Q&A
AAMI/IEC 60601-2-2 specifies requirements for the safety of high frequency (HF) surgical equipment and HF surgical accessories used in medical practice. Some low-powered high frequency surgical equipment (for example for micro-coagulation, or for use in dentistry or ophthalmology) is exempt from certain requirements of this particular standard.

The *minimum* safety requirements specified in this particular standard are considered to provide for a practical degree of safety in the operation of high frequency surgical equipment.
Typical P.M.I. for an ESU

- Check the power output
- Current, wattage, Vrms & V pk-pk
- Check the return electrode monitoring circuit (the neutral or dispersive pad)
- Check the HF leakage
- Test the E.S.T., foot pedals and controls

- Always to manufacturer’s guidelines
Electrosurgical History & Theory
ESU Testing and Calibration Training
Focus - HF Leakage Testing

1. Electrosurgical History and Theory
2. ESU Standards – IEC 60601-2-2
3. HF Leakage Testing
4. Q&A
• High frequency leakage test of electrosurgical generators is **required** as specified in the standard.

• **Why?** *It involves patient safety.*

• Insure that the ESU circuitry is properly limiting the amount of capacitive leakage of high frequency current

• At frequencies exceeding 400kHz, the electrical current has a tendency to stray

• Leading to decreased functionality and potential patient injury
19.3.101 Thermal effects of HF LEAKAGE CURRENTS

In order to prevent unintended thermal burns, HF LEAKAGE CURRENTS tested from ACTIVE and NEUTRAL ELECTRODES with PATIENT CIRCUITS activated shall, depending on their design, comply with the following requirements.

a) HIGH FREQUENCY LEAKAGE CURRENTS
 1) NEUTRAL ELECTRODE referenced to earth
 The PATIENT CIRCUIT is isolated from earth but the NEUTRAL ELECTRODE is referenced to earth at HIGH FREQUENCIES (see Figure 103) by components (for example a capacitor) satisfying the requirements of a TYPE BF APPLIED PART. When tested as described below, the HF LEAKAGE CURRENT flowing from the NEUTRAL ELECTRODE through a non-inductive 200 Ω resistor to earth shall not exceed 150 mA.
Figure 105 – Measurement of HF LEAKAGE CURRENT with NEUTRAL ELECTRODE referenced to earth and load from ACTIVE ELECTRODE to earth (see test 2 of 19.3.101 a) 1))

2) NEUTRAL ELECTRODE isolated from earth at HIGH FREQUENCY
The PATIENT CIRCUIT is isolated from earth at both high and low frequencies, and the isolation shall be such that the HF LEAKAGE CURRENT flowing from each electrode through a 200 Ω non-inductive resistor to earth does not exceed 150 mA when tested as described below.

Compliance is checked by the following test.
The HF SURGICAL EQUIPMENT is set up as described for test 1 of 19.3.101 a) 1), the output being unloaded and loaded at the RATED LOAD. Any metal ENCLOSURES of CLASS II HF SURGICAL EQUIPMENT and INTERNALLY POWERED HF SURGICAL EQUIPMENT shall be connected to earth. HF SURGICAL EQUIPMENT having an insulating ENCLOSURE shall be positioned on earthed metal having an area at least equal to that of the base of the HF SURGICAL EQUIPMENT, during this test (see Figure 106). The HF LEAKAGE CURRENT is measured from each electrode in turn while the HF SURGICAL EQUIPMENT is operated at maximum output setting in each HF SURGICAL MODE.
One study.....
31 insurance companies associated through Physician Insurers Association of America (PIAA)

Data from 615 claims associated with laparoscopy procedures using electrosurgery

Found that a majority of claims resulted from

Thermal damage to unintended patient tissue.
This capacitive coupling can be, in part, responsible for serious patient complications. Some methods used to minimize capacitive coupling are active electrode shielding, dispersive metal cannulas, sheathed guide wires, and bipolar active electrodes.
As leakage increases, the thermal density of the surrounding patient tissue increases, both at the active electrode and the dispersive electrode.

Thermal density causes unnecessary tissue damage.
What kind of problems?
HF Interference of Other Medical Devices

- Implanted medical devices.
- Endoscopic camera images.
- In-room viewing cameras.
- ECG monitors.
What kind of problems?
Direct or indirect coupling of HF currents

- Direct
- Indirect
 - Capacitively coupled
 - Inductively coupled
Capacitively coupled currents may not be appreciated during laparoscopic and endoscopic radiofrequency electrosurgery. Two specific problems are documented and quantified: coupling of current into metal trocar cannulas during laparoscopic surgery and coupling of current into a guide wire during endoscopic surgery, which can in turn be dissipated into patient organs such as the bowel or the common bile duct.
What is tested?

HF output current from active and dispersive electrode to earth ground

- Both active and return electrode should be tested
- The tests simulate a failure in either electrode and how well the ESU shields the resulting leakage
- Leakage should not exceed 150 milliamps or 4.5 watts to earth ground through a 200 ohm load
Indirect coupling occurs when the RF energy induces a secondary, non-intended current path through a conductive surface.
A tiny defect in the insulation of instruments in the surgical area may deliver (unobserved) a portion of the current to non-target tissue. In addition, most instruments (especially the articulating scissors and grasper-dissectors) have been designed with a significant amount of exposed metal at the distal tip. At best, the instrument may “ground out” on non-target tissue; however, it is also possible that the bowel or other structures could be burned outside the immediate view of the scope. It is also possible for the exposed metal of the active instrument to be in contact with other conductive instruments (the laparoscope or a metal clip) and a portion of the current may be conducted to tissue outside the visualized field.
How to Test?
How to Test?

TEST CODE 1222
IEC 601-2-2 part 1 FIGURE 103
MEASUREMENT OF H.F. LEAKAGE CURRENT WITH NEUTRAL ELECTRODE ISOLATED FROM EARTH AT HIGH FREQUENCY EARTH ISOLATED ESU MONO-POLAR ELECTRODE COAG MODE NEUTRAL ELECTRODE

[Diagram of electrical circuit with labels COAG, NEUT, EARTH, ISO ESU, Link 3+4, MD, 200, 200]
Monopolar HF leakage open ative electrode check. Select Mono Cut. Set to 300 watts.
Load: 200 ohms
Leakage: 41 mA
Limit: 200 mA
Pass
Test Complete
Guide to Electrosurgery

Pick up a free copy or email me at jackb@seaward-groupusa.com for a copy.
Electrosurgical History & Theory
ESU Testing and Calibration Training
Focus - HF Leakage Testing

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Electrosurgical History and Theory</td>
<td>ESU Standards – IEC 60601-2-2</td>
<td>HF Leakage Testing</td>
<td>Q&A</td>
</tr>
</tbody>
</table>

✓